Notes

NEW ANTHRACYCLINE ANTIBIOTICS: SERIRUBICIN AND 1-HYDROXYSERIRUBICIN[†]

Takeshi Uchida, Masaya Imoto, Tõru Masuda, Hiroshi Yoshimoto^{††}, Kanji Imamura^{††}, Tsutomu Sawa, Hiroshi Naganawa, Tomio Takeuchi and Hamao Umezawa

Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan ^{††}Applied Bioscience Laboratory, Kirin Brewery Co. Ltd., 1-2-2 Souja, Maebashi, Gunma 371, Japan

(Received for publication February 5, 1985)

New anthracycline antibiotics, serirubicin (1) and 1-hydroxyserirubicin (2) have been found in the culture filtrate of *Streptomyces cyaneus* MG344-hF49 (FERM BP-314), which had been previously reported to produce ditrisarubicins A, B (3) and C^{12} . In the present paper, the production, isolation and characterization of anthracyclines 1 and 2 are reported.

The strain was cultured at 27°C for 4 days in a jar fermentor with aeration and agitation in a medium consisting of 3% dextrin, 1.5% soybean meal ("Toast-soya" Nisshin-seiyu Co.), 0.6% glucose, 0.2% CaCl₂ and 0.012% CoCl₂·6H₂O. Red pigments in the filtrate (100 liters) were extracted with butyl acetate (100 liters) at pH 8.0, followed by concentration in vacuo. The resulting residue was dissolved in a small amount of CHCl₃ and placed on a silicic acid column (ϕ 5×20 cm). After washing with a mixture of CHCl₃ - MeOH (100: 1), the fractions containing compounds 1, 2 and 3 and ditrisarubicin C were eluted with a mixture of $CHCl_3$ - MeOH (100: 2), combined and evaporated to dryness. The red powder (125 mg) thus obtained was chromatographed on silicic acid thin-layer plates (Kieselgel 60F₂₅₄, Merck Co.), using CHCl₃ - MeOH -

NH₄OH (100: 5: 0.02) system. The first band (Rf 0.56) was ditrisarubicin B (3), whereas the second band (Rf 0.47) was a mixture of serirubicin (1), 1-hydroxyserirubicin (2) and ditrisarubicin C. This band was scraped off and eluted with a mixture of $CHCl_3$ - MeOH (10: 1). Subsequently the mixture was separated into three components by silicic acid thin-layer chromatography (TLC) developed with EtOAc -MeOH - NH_4OH (20: 1: 0.01). The bands corresponding to 1 (Rf 0.50) and 2 (Rf 0.43) were scraped off and extracted with CHCl₃ - MeOH (10:1). After drying of the extracts, each pigment was further purified by chromatography on a Sephadex LH-20 column with MeOH. Thus, 15.2 mg of 1 and 10.4 mg of 2 were obtained.

The physico-chemical properties of 1 and 2 are as follows:

1: MP 179~183°C (dec); $[\alpha]_{25}^{05}$ -76° (c 0.1, CHCl₃); UV $\lambda_{max}^{0.1N}$ ^{HC1-90% MeOH} nm (E^{1%}_{1cm}) 229 (347), 255 (250), 290 (81), 419 (106), 436 (106); UV $\lambda_{max}^{0.1N}$ ^{NaOH-90% MeOH} nm (E^{1%}_{1cm}) 239 (411), 280 (116), 500 (115); IR (KBr) cm⁻¹ 3450, 1735, 1625, 1460, 1220, 1120, 1010; *Anal* Calcd for C₈₀H₈₀N₂O₂₁: C 61.84, H 6.92, N 2.40; Found: C 60.71, H 7.15, N 2.40; FD-MS *m/z* 1,165 (M+H)⁺.

Fig. 1. CD curves of α-citromycinone (4), α₂-rhodomycinone (6) and β-rhodomycinone (7) (in acetonitrile).

[†] Taken in part from the Ph. D. Thesis of T. UCHIDA, the University of Tokyo, 1984

Carbon	1	2	3	Remarks	
1	119.5	(158.4)	119.8	Aglycone	
2	136.9	(130.0)	137.1		
3	125.0	(129.8)	124.7		
4	162.9	(157.9)	162.7		
4a	116.1	(112.7)	116.2		
5	(187.70)	186.0	190.9		
5a	132.5	(132.8)	(112.1)		
6	118.9	119.0	(157.1)		
6a	146.9	147.3	136.4		
7	74.0	73.9	71.0		
8	36.7	36.7	33.1		
9	72.2	72.2	71.8		
10	70.9	70.4	70.6		
10a	132.2	(131.9)	138.3		
11	162.2	162.0	(157.7)		
11a	115.1	115.1	(111.9)		
12	(187.66)	190.7	186.1		
12a	133.3	112.5	133.6		
13	31.1	31.1	30.7		
14	6.7	6.7	6.6		
1′, 1b′	(96.6), (100.2)	(96.3), (100.2)	(97.4), (101.9)	Rhodosamine	
2', 2b'	29.6, 29.6	29.6, 29.6	(29.4), (29.8)		
3', 3b'	(61.4), (61.6)	(61.4), (61.5)	61.4, 61.4		
4′, 4b′	(74.4), (74.6)	(74.3), (74.5)	(74.3), (74.6)		
5′, 5b′	(68.3), (68.5)	(68.3), (68.4)	(68.3), (68.5)		
6', 6b'	(17.9), (18.1)	(18.0), (18.1)	(17.9), (18.1)		
$NMe_2 \times 2$	(43.28), (43.31)	(43.29), (43.33)	(43.2), (43.3)		
1″, 1b″	99.2, 99.2	99.1, 99.1	99.1, 99.1	2-Deoxyfucose	
2", 2b"	(26.9), (27.0)	(26.9), (27.0)	(26.9), (27.0)	,	
3", 3b"	(67.28), (67.35)	(67.2), (67.3)	(67.3), (67.4)		
4", 4b"	67.0, 67.0	66.9, 66.9	67.0, 67.0		
5", 5b"	(65.3), (65.4)	(65.2), (65.3)	(65.3), (65.4)		
6'', 6b''	16.0, 16.0	(15.96), (16.00)	16.0, 16.0		
1‴, 1b‴	91.6, 91.6	91.6, 91.6	91.6, 91.6	Cinerulose B	
2′′′, 2b′′′	(63.0), (63.1)	(62.97), (63.04)	(63.0), (63.1)		
3''', 3b'''	(39.7), (39.8)	(39.70), (39.75)	(39.7), (39.8)		
4''', 4b'''	208.1, 208.1	208.1, 208.1	208.1, 208.1		
5''', 5b'''	(77.88), (77.94)	(77.88), (77.94)	(77.88), (77.94)		
6''', 6b'''	(16.1), (16.2)	(16, 16), (16, 20)	(16.1), (16.2)		

Table 1. ¹³C NMR chemical shifts* of serirubicin (1), 1-hydroxyserirubicin (2) and ditrisarubicin B (3) (100 MHz).

* In ppm (δ), obtained from CDCl₃ solutions containing TMS as internal reference at 100 MHz. Tentative assignments are given on the basis of the value of ref 6, 7. Similar values in parentheses may be interchanged.

2: MP 189~192°C (dec); $[\alpha]_{55}^{25}$ +1° (*c* 0.1, CHCl₃); UV $\lambda_{max}^{0.1x}$ HC1-90% MeOH nm (E¹⁶_{1cm}) 232 (374), 256 (190), 290 (68), 493 (119), 513 (sh, 89), 525 (73); UV $\lambda_{max}^{0.1x}$ NaOH-90% MeOH nm (E¹⁶_{1cm}) 238 (373), 290 (sh, 69), 565 (145), 606 (139); IR (KBr) cm⁻¹ 3450, 1740, 1605, 1480, 1220, 1120, 1020; *Anal* Calcd for C₆₀H₈₀N₂O₂₂: C 61.01, H 6.83, N 2.37; Found: C 60.83, H 7.12, N 2.27; FD-MS m/z 1,181 (M+H)⁺.

Total acid hydrolysis of **1** in 0.1 N HCl at 85°C for 30 minutes gave α -citromycinone (4)²), which was identified by comparison of its UV, IR, mass and ¹H NMR spectra with those reported^{2,3)}. The identification was also sup-

Fig. 2. Structures of anthracyclines 1, 2 and 3, and their degradation products.

Table 2. Antitumor activity of serirubicin (1) and 1-hydroxyserirubicin (2) against L1210 leukemia.

D	T/C (%)		
Dose (mg/kg/day)	1	2	
1.0	149	114*	
0.5	143	139	
0.25	273	145	
0.125	137	151	
0.0625	113	127	
0.0313	119	108	

Inoculum: 1×10^5 cells/CDF₁ mouse, ip.

Treatment: Day $0 \sim 10$, ip.

* Toxic.

ported by the isolation of γ -citromycinone (5)^{2,4)} after hydrogenolysis of 1 with 5% Pd/BaSO₄ in MeOH. On total acid hydrolysis, compound 2 liberated an orange red aglycone 6, which was determined to be α_2 -rhodomycinone²⁾ by comparison of its $[\alpha]_D$ and Rf values with those of an authentic sample. The absolute configurations of the aglycones 4 and 6 have been reported by BROCKMANN *et al.*⁵; their ¹H NMR spectra

-	F	3-Rhodomycinone			7) H	OH		OH
d	CD	curves	(Fig.	1)	show	the	β-rl	hodo-

and CD curves (Fig. 1) show the β -rhodomycinone (7) configuration (7*S*, 9*R*, 10*R*).

The physico-chemical properties of 4, 5 and 6 are as follows:

4: MP 197~200°C (dec); $[\alpha]_{D}^{25}$ +123° (c 0.05, CHCl₃); UV $\lambda_{\max}^{\text{cyclohexane}}$ nm (E^{1%}_{1cm}) 227 (1,213), 257 (595), 290 (225), 417 (300), 435 (298); UV $\lambda_{\rm max}^{0.1_{\rm N}}~{}^{\rm HC1-90\%~MeO\,H}$ nm (E1%) 228 (1,143), 255 (746), 287 (265), 417 (350), 436 (350); UV $\lambda_{\rm max}^{0.1{\rm N}~Na\,O\,H\,-\,90\%\,MeO\,H}$ nm (E1%) 238 (1,350), 278 (354), 487 (382); IR (KBr) cm⁻¹ 3400, 1630, 1605; FD-MS m/z 370 (M)⁺; ¹H NMR (400 MHz, C_5D_5N) δ 1.36 (3H, t, J=7.4 Hz, H-14), 2.25 (2H, m, H-13), 2.48 (1H, ddd, J=14.4, 2.2, ~1 Hz, H-8B), 2.77 (1H, dd, J=14.4, 5.2 Hz, H-8A), 5.26 (1H, ddd, J=7.5, 5.2, 2.2 Hz, H-7), 5.59 (1H, dd, J=3.8, ~1 Hz, H-10), 6.36 (1H, s, OH-9), 6.78 (1H, d, J=7.5 Hz, OH-7), 7.36 (1H, dd, J=8.5, ~1 Hz, H-3), 7.59 (1H, OH-10), 7.61 (1H, dd, J=8.5, 7.5 Hz, H-2), 7.86 (1H, dd, $J=7.5, \sim 1$ Hz, H-1), 8.35 (1H, s, H-6), 13.01 (1H, s, OH), 13.62 (1H, s, OH).

5: MP 219~224°C (dec), UV $\lambda_{\max}^{\text{cyclohexane}}$ nm (E^{1%}_{lom}) 418 (337), 437 (337); EI-MS m/z 354

(M)⁺, 336 (M-H₂O)⁺, 318, 282, 280, 279; ¹H NMR (250 MHz, CDCl₃) δ 1.10 (3H, t, *J*=7.4 Hz, H-14), 1.77 (2H, m, H-13), 1.88 (1H, s, OH-9), 1.93 (1H, ddd, *J*=14.5, 5, 1.3 Hz, H-8B), 2.36 (1H, ddd, *J*=14.5, 2, 2 Hz, H-8A), 2.67 (1H, d, *J*=19 Hz, H-10B), 3.16 (1H, dd, *J*=19, 2 Hz, H-10A), 3.93 (1H, d, *J*=10 Hz, OH-7), 4.87 (1H, ddd, *J*=10, 5, 2 Hz, H-7), 7.33 (1H, dd, *J*=8.5, ~1 Hz, H-3), 7.69 (1H, dd, *J*=8.5, 7.5 Hz, H-2), 7.85 (1H, dd, *J*=7.5, ~1 Hz, H-1), 8.00 (1H, s, H-6), 12.73 (1H, s, OH), 13.17 (1H, s, OH).

6: MP 214~217°C (dec); $[\alpha]_{25}^{25} + 210°(c 0.03, CHCl_3)$; UV $\lambda_{max}^{0.1N}$ H°1-90% MeOH nm (E¹⁶_{1em}) 232 (1,192), 256 (614), 288 (219), 489 (383), 590 (sh, 295), 523 (sh, 236); UV $\lambda_{max}^{0.1N}$ NaOH-90% MeOH nm (E¹⁶_{1em}) 241 (1,200), 285 (sh, 246), 553 (432); IR (KBr) cm⁻¹ 3400, 1595, 1450, 1280; EI-MS m/z 386 (M)⁺, 368 (M-H₂O)⁺, 350 (M-2H₂O)⁺, 334, 311, 296; ¹H NMR (100 MHz, C₅D₅N) δ 1.36 (3H, t, H-14), 2.24 (2H, m, H-13), 2.45 (1H, ddd, J=14, 2, 2 Hz, H-8B), 2.74 (1H, dd, J=14, 5 Hz, H-8A), 5.24 (1H, m, H-7), 5.55 (1H, br s, H-10), 7.37 (2H, s, H-2 and H-3), 8.38 (1H, s, H-6).

The sugar moieties in 1 and 2 were found to consist of rhodosamine, 2-deoxyfucose and cinerulose B as in ditrisarubicin B (3) by a silicic acid TLC analysis of their acid hydrolysates. Their ¹³C NMR spectra (Table 1) suggested that 1 and 2 consisted of two trisaccharides similar to 3. Methanolysis of 1 and 2 in 0.046 N methanolic hydrogen chloride at room temperature for 3 hours gave a methyl disaccharide 8, which was identified as methyl 2',3-anhydro-2,6-dideoxy-4-O-(3,6-dideoxy-a-L-erythro-hexopyrano-4-ulose-1-yl)- α -L-lyxo-hexopyranoside by comparison of $[\alpha]_{D}$ and ¹H NMR spectrum with reported data⁶⁾. These results indicated that both sugar substituents of compounds 1 and 2 are composed of two trisaccharides, whose sequences are identical with that of 3. Furthermore the ¹³C NMR spectra indicated that the hydroxyl groups at C-7 and C-10 of the aglycone linked to the trisaccharides in both 1 and 2. Thus, we propose the structures shown in Fig. 2 for serirubicin (1) and 1-hydroxyserirubicin (2).

The cytotoxic activity of 1 and 2 was compared with that of 3; the IC₅₀ values against P388 leukemia cells were 0.0098 μ g/ml, 0.012 μ g/ml and 0.004 μ g/ml, respectively. The antitumor activity of 1 and 2 was also tested against L1210 leukemia cells in CDF_1 mice and the results are shown in Table 2. The median lethal doses (LD_{50}) by a single intraperitoneal injection of 1 and 2 in mice were $10 \sim 20 \text{ mg/kg}$ and $5 \sim 10 \text{ mg/kg}$, respectively.

Though cosmocarcin A⁸⁾, which was identical with serirubicin⁹⁾, was recently reported, this study was performed independently.

Acknowledgments

This work was supported in part by a Contract No. NO1-CM-47593 with the Division of Cancer Treatment, National Cancer Institute, U.S.A. and by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science and Culture, Japan.

References

- UCHIDA, T.; M. IMOTO, T. MASUDA, K. IMA-MURA, Y. HATORI, T. SAWA, H. NAGANAWA, M. HAMADA, T. TAKEUCHI & H. UMEZAWA: New antitumor antibiotics, ditrisarubicins A, B and C. J. Antibiotics 36: 1080~1083, 1983
- BROCKMANN, H. & J. NIEMEYER: α₂-Rhodomycinon, α-Citromycinon, 7-Citromycinon. Chem. Ber. 101: 1341~1348, 1968
- ANDERSON, D. K.; C. E. COBURN, A. P. HAAG & J. S. SWENTON: The synthesis of (±) αcitromycinone via a 1,4-dipole-metallated pquinol strategy. Tetrahedron Lett. 24: 1329~ 1332, 1983
- KROHN, K. & B. BEHNKE: Synthese der Citromycinone, stereoselektive Öffnung eines Epoxids zum cis-Diol. Tetrahedron Lett. 23: 395~ 398, 1982
- BROCKMANN, H.; H. BROCKMANN, Jr. & J. NIEMEYER: Die absolute Konfiguration der Anthracyclinone. Tetrahedron Lett. 1968: 4719~4727, 1968
- 6) OKI, T.; I. KITAMURA, Y. MATSUZAWA, N. SHIBAMOTO, T. OGASAWARA, A. YOSHIMOTO, T. INUI, H. NAGANAWA, T. TAKEUCHI & H. UME-ZAWA: Antitumor anthracycline antibiotics, aclacinomycin A and analogues. II. Structural determination. J. Antibiotics 32: 801~819, 1979
- 7) DOYLE, T. W.; D. E. NETTLETON, R. E. GRU-LICH, D. M. BALITZ, D. L. JOHNSON & A. L. VULCANO: Antitumor agents from the bohemic acid complex. 4. Structures of rudolphomycin, mimimycin, collinemycin, and alcindoromycin. J. Am. Chem. Soc. 101: 7041~7049, 1979
- TSUJI, T.; M. TAKEZAWA, H. MORIOKA, T. KIDA, I. HORINO, T. ETO & H. SHIBAI: A new anthracycline antibiotic, cosmocarcin A. Agric. Biol. Chem. 48: 3181~3184, 1984
- UMEZAWA, H.; T. TAKEUCHI, M. HAMADA, H. NAGANAWA, T. SAWA, T. UCHIDA & M. IMOTO: Anthracycline compound. Japan Kokai 84-148,795, Aug. 25, 1984